Table of Contents

	Table of Illustrations	viii
	Table of Abbreviations	xiv
	Authors	XV
	Foreword by Dr Linda Doyle, Provost and President	xix
	Preface	xxi
Chapter 1	Chemistry, The Handmaid of Medicine 1711-1844	I
Chapter 2	A New Era 1844-1903	47
Chapter 3	Young and Werner 1903-1947	87
Chapter 4	The Cocker Years 1947–1978	102
Chapter 5	The Department in Transition 1978–2000	181
Chapter 6	The New Millennium 2001-2022	245
	Appendices	309
	Index	357

Table of Illustrations

Figure 1.1	The Alchemist, by David Teniers the Younger c.1650	xxii
Figure 1.2	Prospect of the Library by Joseph Tudor (1753) showing the Elaboratory (the two-story building to the right of the old library)	4
Figure 1.3	Detail from Samuel Byron's Isometric Map of Trinity College (1780) showing the Old Library and the Elaboratory	5
Figure 1.4	William Maple, operator in chemistry 1718-45	7
Figure 1.5	William Stephens, Lecturer in Chemistry 1733-60	8
Figure 1.6	Botanical Elements by William Stephens (1727)	9
Figure 1.7	Francis Hutcheson, Lecturer in Chemistry, 1760-1767	II
Figure 1.8	The Westmoreland Lock Hospital, Townsend Street, Dublin, 1792-1955	13
Figure 1.9	Robert Perceval, Lecturer and Professor of Chemistry 1783-1808	16
Figure 1.10	Perceval's lecture notes	19
Figure 1.11	Perceval's lecture notes describing the preparation of nitric acid	20
Figure 1.12	Perceval's apparatus for making nitric acid	20
Figure 1.13	Illustration from Prior's notes on Perceval's lectures	22
Figure 1.14	Note on the inside cover of Scott's book on chemistry	24
Figure 1.15	Title page of Stack's book on chemistry	25
Figure 1.16	Perceval's chamber lamp furnace	26
Figure 1.17	Snuff box presented to Perceval in 1807 by the Directors of the Apothecaries Hall, Dublin	31
Figure 1.18	Memorial tablet to Perceval in St Michan's Church, Dublin	32
Figure 1.19	Catalogue of apparatus by Barker	36
Figure 1.20	The New Anatomy/Chemistry Building 1825 from T.C.P. Kirkpatrick History of the Medical Teaching in Trinity College Dublin	41
Figure 1.21	Barker's grave in Mount Jerome Cemetery, Dublin	42
Figure 2.1	Sunville House, birthplace of James Apjohn	49
Figure 2.2	James Apjohn, Professor of Applied Chemistry 1844-81, Professor of Mineralogy 1845-81, University Professor of Chemistry 1850-74	50
Figure 2.3	Apjohn's chemistry textbook	53
Figure 2.4	James Apjohn by Thomas Jones, Professor of Applied Chemistry 1844-81, Professor of Mineralogy 1845-81, University Professor of Chemistry1850-74	60
Figure 2.5	James Apjohn, Professor of Applied Chemistry 1844-81, Professor of Mineralogy 1845-81, University Professor of Chemistry1850-74	61
Figure 2.6	Apjohn's grave in Mount Jerome Cemetery	61
Figure 2.7	No. 5 Booterstown Avenue, Co Dublin, birthplace of Reynolds	63
Figure 2.8	James Emerson Reynolds, University Professor of Chemistry 1875-1903	64
Figure 2.9	Reynolds' preparation of thiourea	65
Figure 2.10	Original crystals of Reynolds' thiourea prepared in 1869, preserved in the Department of Chemistry Trinity College	66

Figure 2.11	Reynolds' zig-zag periodic table (1886)	67
Figure 2.12	Reynold's lecture to DUESA in 1888	69
Figure 2.13	A page from the list of chemicals that Reynolds sold to the College	70
Figure 2.14	An analytical balance and box of weights, made by Thomas Grubb in c.1835 and preserved in the Trinity Chemistry Department	71
Figure 2.15	Reynolds' lecture notebook – title page and introduction	72
Figure 2.16	James Emerson Reynolds, Professor of Chemistry 1875-1903	75
Figure 2.17	Professor Reynolds promotes Lamancha wine	77
Figure 2.18	The new Medical School Building of 1887	79
Figure 2.19	The façade of McCartney's 1825 building within the 1887 building	80
Figure 3.1	Portrait of Sydney Young	88
Figure 3.2	Sydney Young's fractionating columns	88
Figure 3.3	List of apparatus ordered by Ramsden for a practical class	90
Figure 3.4	Correct structures for Werner's red and blue crystals	91
Figure 3.5	Formulae of Thiourea and Urea	93
Figure 3.6	Metformin	93
Figure 3.7	Portrait of K.C. Bailey	95
Figure 3.8	Sketch of Emil Werner (charcoal on card)	98
Figure 4.1	A student's 'cubicle' work-station in the antiquated Long Room laboratory	105
Figure 4.2	The 1948 'Top Laboratory' in about 1998, well past its 'sell by' date	107
Figure 4.3	A Freshman teaching laboratory in the 1950s	108
Figure 4.4	A teaching laboratory as it was in the 1950s, most likely the DPH laboratory	108
Figure 4.5	A plan of the Chemistry Building dated 1921 showing an unexecuted proposal for a new laboratory to be built on the site of the old Long Room	109
Figure 4.6	Demolition of the 'Long Room' laboratory under way in 1956	IIO
Figure 4.7	Another view of the part-demolished 'Long Room' laboratory	IIO
Figure 4.8	The physical chemistry teaching laboratory on the first floor of the 1957 Wing	II2
Figure 4.9	A magnetic balance in use in the new Physical Chemistry teaching laboratory	II2
Figure 4.10	The Freshman Laboratory on the ground floor of the 1957 wing	II2
Figure 4.11	The staircase in the 1957 wing	113
Figure 4.12	The Lecture Theatre in the 1957 wing	113
Figure 4.13	Steam rising in the Professor's Laboratory, mid-1960s	113
Figure 4.14	The refurbished ground floor research laboratory in the mid-1960s	114
Figure 4.15	The small organic chemistry instrument room located behind the Large Lecture Theatre in about 1963	115
Figure 4.16	After demolition of the DPH Laboratory prior to construction of the infill 1966 building, showing the rear wall of the Large Lecture Theatre	116
Figure 4.17	The 'Hut' Laboratory	118
	David C. Pepper	119

Figure 4.19	Peter Schwarz's 1950 letter of employment as Assistant Lecturer at a salary	
	of £400 per annum	121
	Bill Davis, W.H.A. Macintosh and Eddie Stuart	123
	Brian McMurry with AnneMarie Farrell, Senior Executive Officer	125
Figure 4.22	Academic staff and some students in 1964, assembled in front of the 1887 building	127
Figure 4.23	A 'shotgun wedding' for Mary Carson, with a number of contemporary graduate students	128
Figure 4.24	The author of this chapter, David Grayson, in 2011, when Head of School	129
Figure 4.25	Merle Hanna at her desk	131
Figure 4.26	Mr Macintosh at his retirement dinner, with Cocker in attendance	133
Figure 4.27	Professor Cocker, Mrs Macintosh, Mrs Cocker, Mr Macintosh	134
Figure 4.28	Mr Macintosh speaking at his retirement dinner	134
Figure 4.29	Mr Macintosh MA h.c.	134
Figure 4.30	Harry Lewis in conversation with David Pepper	135
Figure 4.31	Douglas Glen (Zoology), Joe Cassidy, Edward Kermode (Anatomy), Harry Lewis and W.H.A. Macintosh in 1981	136
Figure 4.32	'Rejoyce Dublin' by Martin Stuart Moore	138
Figure 4.33	The Moderatorship Class of 1950	146
Figure 4.34	The Moderatorship Class of 1978	147
Figure 4.35	A cheque for £16-1-9 made payable to Wilkinson for his travel expenses in 1964	153
Figure 4.36	D.C. Pepper, E.M. Philbin, Dr Takeda, T.B.H. McMurry, W. Cocker	153
Figure 4.37	A UV spectrum from the Unicam SP-800 spectrometer, in 1970	159
Figure 4.38	An IR spectrum run by the author using the Perkin Elmer spectrometer, showing the calibration absorption at 1601 cm ⁻¹	159
Figure 4.39	The Perkin Elmer R-10 NMR spectrometer	161
Figure 4.40	A 60 MHz NMR spectrum taken in 1970	161
Figure 4.41	Research publications by members of staff 1947-1978	164
Figure 4.42	Structures of the santonins	165
Figure 4.43	Original and revised structures of Marrubiin	166
Figure 4.44	Structures of Inermin and of pentachlorophenol	166
Figure 4.45	Structures of (+)-Car-3-ene, Caran-4-ol, Caran-4-one and Car-3-en-5-one	167
Figure 4.46	Structures of Santonene and of 6-Hydroxycyclohexenone	168
Figure 4.47	Structures of styrene, polystyrene and ethyl cyanoacrylate	168
Figure 4.48	P. Rutherford before receiving his PhD degree at Trinity Commencements 1958	169
Figure 4.49	Chemistry PhD students after Commencements 1966	169
Figure 4.50	Engine trouble on the way to an early Colloquium	177
Figure 4.51	Wesley Cocker on his retirement in 1978, at the main entrance to the Department	178
Figure 4.52	'He was not merely a chip off the old block, but the old block itself'	179

Figure 5.1	Academic Staff of the Chemistry Department in 1978	182
Figure 5.2	Bob Lloyd with some of his laboratory apparatus in 1978	183
Figure 5.3	Course Structure in the Faculty of Natural Sciences 1978	186
Figure 5.4	Moderators in 1978 with Professor Cocker	186
Figure 5.5	Eddie Stuart, Wesley Cocker and Sean Corish in 1982	188
Figure 5.6	Science of Materials Graduates and Staff (June 1991)	190
Figure 5.7	Michael Gillen and Jean-Marie Lehn on the occasion of the Nobel prize winner giving a lecture organised by the Werner Chemical Society	194
Figure 5.8	A Chemistry Department football team	196
Figure 5.9	Corinne Harrison, the Departmental Secretary	197
Figure 5.10	Departmental non-pay grant compared to total salaries of all staff	198
Figure 5.11	Physical Chemistry Laboratory (Sean Corish's research laboratory)	200
Figure 5.12	Physical Chemistry Teaching Laboratory after the move to the Intermediate Laboratory	201
Figure 5.13	UV/Visible spectrometers. (a)Unicam SP8200 and (b)SP8800	204
Figure 5.14	Christine Cardin working on the Enraf-Nonius CAD3 machine	206
Figure 5.15	Strained-ring product of a photocyclisation reaction	207
Figure 5.16	Patrin 2	207
Figure 5.17	Members of the Patrin 2 team	207
Figure 5.18	Folic Acid	208
Figure 5.19	Stereoselective synthesis using an organo-silicon reagent	209
Figure 5.20	A biomimetic glucose receptor	209
Figure 5.21	The Niconil patch (a) and the audio-cassette (b) used to encourage users to stop smoking	211
Figure 5.22	Polymer-bound sensitisers employed in early attempts to induce water splitting by sunlight	212
Figure 5.23	Nanosecond laser spectroscopy experiments 1985	213
Figure 5.24	High Vacuum Equipment used for surface science investigations	215
Figure 5.25	The structures of (a) a chromium alkenyl complex and (b) a compound showing a bond between an osmium and tin atoms reported by the Cardin group	216
Figure 5.26	Course requirements within the Faculty of Science. (University of Dublin Calendar 1993/4)	218
Figure 5.27	Expenditure from externally-funded research grants compared to the Departmental non-pay allocation.	219
Figure 5.28	Government Expenditure on Research in various OECD countries in 1992	219
Figure 5.29	Bob Lloyd and David Cardin in 1992	223
Figure 5.30	(a) An artificial glucose binder and (b) a cholic acid derivative	225
Figure 5.31	Luminescence probes for (a) sodium ions and (b) rare-earth molecular logic gate	226
Figure 5.32	Photo-sensitised targeting of the nucleic acids sequence of chronic myeloid leukaemia RNA	226

Figure 5.33	Computer simulations by Iony Morton-Blake of (a) the effect of dopants on the structure of polyalkylthiophenes and (b) an electroactive micelle consisting of poly-3-alkylthiophene to study the dynamics of the Na ⁺ and Cl ⁻ ions in the aqueous central spherical cavity	227
Figure 5.34	The molecular structure of the adduct formed photochemically between a ruthenium compound and guanine in DNA using visible light	227
Figure 5.35	Examples of the structures of inorganic compounds prepared in the groups of (a) Robin Bedford; (b) and (c) Paul Kruger; (d) Sylvia Draper and (e) Yurii Gun'ko	229
Figure 5.36	Wesley Cocker, Provost Thomas Mitchell and Head of Department John Kelly at the opening of the Cocker laboratory in January 1996	232
Figure 5.37	The larger section of the Cocker Laboratory	233
Figure 5.38	The Physical Chemistry Teaching Laboratory in the Sami Nasr Building (SNIAM) set up for a Junior Freshman experiment	235
Figure 5.39	Moderatorship class of 2000 with some staff members	236
Figure 6.1	Old Main Chemistry Building and Extension	253
Figure 6.2	The Science Gallery Dublin LifeLogging Exhibition	255
Figure 6.3	New millennium buildings in which School of Chemistry staff are housed	258
Figure 6.4	Staff and student gathering at School event on May 7th 2010	260
Figure 6.5	Inaugural DubChem Class of 2007 photographed in front of the Old Chemistry Building	262
Figure 6.6	Attendees at the launch of the Dublin Chemistry Graduate Programme	263
Figure 6.7	Science Gallery Exhibitions, the Elements Exhibit the circular form of the periodic table of the elements	265
Figure 6.8	Advanced Microscopy Laboratory capabilities, showing a JOEL Transmission Electron Microscope and a Zeiss Scanning Electron Microscope	268
Figure 6.9	Prof. Carel le Roux, Prof. Valeria Nicolosi, President Michael D. Higgins, Prof. Matthew Campbell and Prof. Mark Ferguson	270
Figure 6.10	Some members of the technical and administrative staff in September 2022	273
Figure 6.11	Core strengths of the School and important research challenges and related projects that are under investigation at the time of writing (2022)	276
Figure 6.12	New approach to the fabrication of battery anodes based on micron-sized silicon particles that are reinforced with carbon nanotubes	277
Figure 6.13	Oxidation reduction reaction at graphene nanofiber electrodes with the controlled morphologies and controlled graphitic- (NG) and pyridinic-nitrogen (NP) sites	278
Eiguro 6 14	Heat map showing the performance of different Ru and Mn based catalysts.	•
-	Water splitting electrode, a schematic representation of the duplex layer	279
rigure 0.15	(surfaquo group) model of the oxide/solution electrochemical interfaces, on a scanning electron microscope image of the surface of the functioning electrode	280
Figure 6.16	Revision of the classical lone pair bonding model in post-transition metal oxides	281
Figure 6.17	Enantiomerically-pure ß-amino alcohols used as motifs in pharmaceutical chemistry	281
Figure 6.18	GG – a small molecule with the ability to selectively bind to tRNA in rapidly proliferating cells	282

Figure 6.19	Strategy of exploiting non-covalent interactions in guanidine to target the minor groove in the DNA for potential anticancer therapies	282
Figure 6.20	Porphyrins designed to be conformationally constrained allow the normally shielded core nitrogen atoms in free base to become accessible, establishing a new mode of catalytic action	283
Figure 6.21	Overall architecture of apo-Lit from <i>B. cereus</i> spanning the cell membrane that provides a basis for future therapy development	284
Figure 6.22	Structural colour in 3D-printed microscopic gas sensor. Optical micrograph of the pixelated sensor's response to different vapours, and SEM image of the pixelated sensor, showing the different heights of the periodic structure responsible for the colour effect	284
Figure 6.23	Self organised cluster from the assembly of six BPA ligands around a single sulphate anion and phosphorescence from the Eu(III) gel, which emits with red colour under UV illumination	285
Figure 6.24	Nile-red tethered to Ru tris-bipryidine complex, and Nanosecond-time resolved transient difference spectra and emission spectra from the tethered complex	286
Figure 6.25	Magnets can be exploited to trigger on demand the initiation of chemical polymerisation in solution	287
Figure 6.26	Coloured dispersion containing different size Ag nanoparticles, and Transmission electron micrographs of the particles of monodispersed size and shape	287
Figure 6.27	Infiltration of a poly-2-vinylpyridine (P2VP) brush with aluminium nitrate and oxidation to form coherent Al_2O_3 thin film on silicon substrate	288
Figure 6.28	Observed and predicted nanoscale aluminium optical antenna, and plasmon- enabled photo-synthesis of germanium nanostructures on a bow-tie shaped gold nanoantenna	288
Figure 6.29	Binary interpretation of recognition features in nucleobases C and G	289
Figure 6.30	Various morphologies of nanocrystalline cadmium sulphide prepared under different reactor conditions	291
Figure 6.31	Effectiveness of alcohol treatment in the elimination of micro-additive particles from microplastics that are indistinguishable by Raman spectra	291
Figure 6.32	Mimicking the efficiency of oxidase enzymes found in Nature to develop whole new classes of sustainable catalysts capable of efficient hydrocarbon oxidation and functionalisation	292
Figure 6.33	Carbon capture technologies: Metal-Organic Framework showing large internal surface area used for gas adsorption, and a prototype industrial Direct Air Capture unit with a carbon dioxide capture capacity of >5 tonnes per annum	293
Figure 6.34	The structure of uranyl chloride ${\rm UO_2Cl_2}$ in water determined by neutron diffraction and x-rays	294
Figure 6.35	School of Chemistry EPE Team Members who comprised the Current Chemistry Investigators (CCI) that attended the Cork Carnival of Science in June 2022	298